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In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill.
Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar
has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly
that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the
same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is
performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in
the incoming bar conditions, and final product changes. In order to overcome these problems, artificial
intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article,
neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale
breaker entry temperature, given its importance, and their performance is compared to that of the physical
model used in plant. Several neural systems and several neural-based Gray-Box models are designed and
tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several
factors which are believed to have influence on the process are also tested. The systems proposed in this
study were proven to have better performance indexes and hence better prediction capabilities than the
physical models currently used in plant.

Keywords Gray-Box modeling, hot rolling, hot strip mills, hybrid
modeling, neural networks, semiphysical modeling,
temperature estimation

1. Introduction

A hot strip mill (HSM) transforms steel slabs or ingots forms
obtained by continuous or traditional casting into coiled strips.
A typical hot rolling line consists of the following stages:
furnaces or soaking pits, roughing mills (RMs)—sometimes
one or two reversible RMs, finishing mill (FM), cooling banks,
and down coilers. Figure 1 shows the hot rolling line where this
study was undertaken. When the study was carried out, the mill
was equipped with soaking pits, numbered from 1 to 22 in
Fig. 1. Currently, this HSM is working with a walking beam
furnace, and less dispersion on temperature would be expected.
A final strip coil of a HSM must attain required thickness,
width, and mechanical properties (Ref 1).

After the slab leaves the furnace, at about 1300 �C, it is
transported for roughing, in this case two reversible RMs, see
Fig. 1. Here, the initial thickness reduction takes place usually
with 5 or 7 passes. The next stage is the FM which often
consists of 6 or 7 stands; Fig. 2 shows a schematic of a FM
stand. When it is in the FM, the bar is called strip. At the FM

exit, the strip has to fulfill final thickness, width, and finishing
temperature specifications, the last one is required to achieve
the desired mechanical properties. When the strip leaves the
FM, it is taken to the cooling banks where the strip has to be
cooled down from the finishing temperature to a specific coiling
temperature which is also required for mechanical properties.

The most critical process stage in hot rolling is the FM. It
involves a great number of variables due to the interaction
between stands and requires a higher level of automation (Ref
2). The initial set points for FM controllers; for both, thickness
and finishing temperature control; have to be calculated before
the incoming bar enters the mill for the bar front section (bar
head-end) to meet requirements. In order for the initial set
points to be calculated, some rolling variables, particularly
temperature, at bar head-end have to be estimated. Such
estimation must be performed on-line and in the shortest
possible time to preserve heat (Ref 2). Thus, temperature
estimation at the bar head-end is a major concern in hot rolling,
and it is performed from measurements at the exit of the RM
since the bar surface is more clean at this point (Ref 1, 2) and it
is not affected by recalescence (Ref 3). The set of values of the
calculated variables required for the FM to work is usually
called ‘‘mill set up.’’

Currently, in most mills, rolling temperature estimation is
performed by physical modeling (Ref 2). This is carried out in
cascade from the RM exit temperature, as mentioned above,
according to the different thermal phenomena involved (Ref 2).
Figure 1 shows in blocks this cascade estimation process. First,
estimation at the FM entry descaler, usually called secondary
scale breaker (SB), is performed; the FM entry descaler can be
seen in Fig. 1 labeled with letter D. The output of this model is
fed to the models that calculate the temperature at the SB exit.
Then this estimation is used to predict the rolling temperature
within the roll gaps in the FM for each stand, see Fig. 2. The
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dashed lines in Fig. 1 indicate the corresponding points to the
estimated temperatures. Nonetheless, only the FM estimated
temperature is used for set point calculations. This study is
concerned with the bar head-end temperature estimation at the
entry of the SB, first block (shadowed) in Fig. 1 (Ref 1, 2).

Usually, the physical modeling estimation error is compen-
sated by an additive proportional plus integral (PI) structure as
shown in Fig. 3, which will be described in detail later (Ref 2).
It can be noticed from Fig. 3, that the PI structure is
compensating the current prediction with previous bar predic-
tion error assuming that current conditions are similar to the
former ones. Therefore, measurement uncertainties, variations
in the process, and continuous product changes may have

detrimental effects on estimation, i.e., large estimation error and
therefore a faulty mill set-up, leading to a non-conformational
bar head-end (Ref 4), and thereby reducing process efficiency.

However, in order to overcome the aforementioned prob-
lems, estimation systems based on Artificial Intelligence (AI)
techniques, such as Artificial Neuronal Networks (ANNs) and
Fuzzy Logic (FL) have been proposed. Such artificial intelli-
gent technologies offer the advantage of estimating nonlinear
function without having complete knowledge of the process as
well as adaptation and learning (Ref 4-6). Adaptation and
learning confer the ANN the prediction capabilities under a
diversity of operating conditions.

A Gray-Box system basically consists of two systems of
different nature. The first is usually a physical model based on a
phenomenological representation of the process, and the second
system is based on a different technique namely AI. Therefore,
the already mentioned advantage of the ANN also applies for
neural-based Gray-Box modeling. In Ref 7, it is mentioned that
Gray-Box models are prediction models with greater accuracy
and a wider range of conditions. On the other hand, FL is a
powerful technique to model nonlinear relations incorporating
empirical knowledge. The combination of these techniques,
i.e., neuro-fuzzy systems, captures the advantages of both
technologies.

Another advantage of the ANNs over the physical model as
implemented by finite differences is that the time consumed for
computing is less. In addition, the ANNs are simpler to adapt
and use since it only requires minimal training, allowing a
better approximation.

There are two other merits of Gray-Box models. Gray-Box
models allow taking advantage of the equipment already
installed in plant since it introduces an additive term to the
physical model used to set-up the mill; hence, the commission-
ing stage is much faster and safer. The great disadvantage of AI
techniques is the lack of physical interpretation that is something
very much desirable from process engineering and trouble-
shooting stand point; nonetheless, this is overcome by Gray-Box
modeling since it contains a physical model within its structure.

Fig. 1 Hot rolling mill production line with temperature prediction block diagram

Fig. 2 Schematic diagram of a hot strip mill stand
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In the forthcoming paragraphs, a literature review showing
the success of AI techniques in a HSM is presented; these
techniques have proven, given their adaptation and learning
capabilities, to be suitable for processes involving highly
varying operating conditions as well as measurements� uncer-
tainties. First, the FL applications are shown, followed by ANN
and neuro-fuzzy works. Gray-Box modeling is also reviewed
beginning with industrial applications in general, followed by
applications specific to hot rolling.

One of the early studies carried out in this field is presented
in Ref 8. A Fuzzy Inference System (FIS) was developed to
compensate the thickness error based on the physical model
force prediction error in two intermediate stands in the FM. A
system which integrates the operator expertise and a FIS to set-
up gaps and speeds in the FM is presented by Watanabe et al.
(Ref 5). Several ANN-based systems for the estimation of FM
variables, such as force, stack temperature, and full set-up have
been proposed (Ref 4, 6, 9-12).

Mendez et al. (Ref 13) have proposed bar head-end entry
temperature prediction of a HSM using a hybrid learning
neural-fuzzy type-2 FIS. Min-You (Ref 14) has proposed
material property prediction using neural-fuzzy networks.
Mahfouf et al. (Ref 15) presents the use of neural-fuzzy
techniques for modeling and optimization of the mechanical
properties of alloy steels in heat treatment and hot rolling.

One approach proposed in the literature for the estimation of
the variables is the so-called Gray-Box Methodologies (also
called Hybrid or Semiphysical Models). As mentioned, a Gray-
Box model basically consists of systems of two different types.
The first is usually a physical model based on a phenomeno-
logical representation of the process, wherein the physical
model used in plant will be considered. The second system is
based on a different technique, that is, AI, Gray-Box modeling
will be described in Section 5. In Ref 7, a review of Gray-Box
modeling and its industrial applications is presented, justifying
its use for meeting the great demand that exists in the prediction
models for material production with greater accuracy and a
wider range of conditions.

In the industry in general mainly ANN-based Gray-Box
modeling has been used for variable estimation, for example, in
a waste water plant (Ref 16), for synthesis in liquid process
phase of the methanol (Ref 17), for modeling the sucrose
crystal growth rate (Ref 18), and the retention process in
papermaking (Ref 19). An application of a neuro-fuzzy-based
Gray-Box model can be found in Ref 20.

Applications of ANN-based Gray-Box models have also
been found in the steel industry: see Hodgson et al. (Ref 21) for
prediction of the hot strength in steels and Schlang et al. (Ref
22) who present the current and future development of neural
computation including neural-based Gray-Box models.

Geerdes developed one parallel and two series connection
structures of Gray-Box models for temperature prediction in a
HSM. It is demonstrated that the use of Gray-Box systems have
potential advantages with respect to ANN or a physical model
alone (Ref 23).

1.1 Objectives and Scopes

As can be seen from the previous section, ANNs and neural-
based Gray-Box models have not been fully explored for
temperature estimation in a HSM. The ultimate goal is to
improve head-end temperature estimation; however, the first
purpose of this study is to explore and evaluate the applications
of neural techniques, ANN, and neural Gray-Box models, for
bar head-end SB entry temperature estimation, given the
relevance of this variable in the calculation of initial controller
set points, and hence in final strip quality fulfillment. Several
ANNs and neural-based Gray-Box models have been designed
and tested. Their performances are compared to those of the
physical model with PI compensation used in plant as depicted
in Fig. 3 using five performance measures (PMs). The main
reason for the Gray-Box models to be studied in this work is
that they have the advantages of keeping a model based on the
physical knowledge which is important for process engineering
and that they allow a safer commissioning stage.

Another advantage of the ANNs is that they allow the
incorporation of new inputs without significant changes on the
ANNs architecture or a deep knowledge of the process; while
incorporation of new entry in physical modeling requires a
great amount of effort. This capability allowed testing several
factors which are believed to be important for SB entry
temperature estimation but not considered by the physical
model, this being a second purpose of this work. Thus, ANNs
and neural-based Gray-Box systems incorporating additional
entries for such factors were also developed and tested.

The physical model used currently in plant to estimate
temperature is used here as a benchmark, a detailed description
of which is out of the scope of this study, it being a very well-
established theory (Ref 3, 24); in Section 3, however, it is
briefly described.

Fig. 3 Physical model with a PI compensation structure
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Neural Networks theory details are also out of the scope of
this study; the fundamentals are briefly described; for details
see Ref 25.

2. Description of the Problem

Figure 2 shows a schematic representation of a mill housing
of a FM stand. The inner rolls in contact with the strip are
called work rolls, and the outer and larger rolls are called
backup rolls. The actuator used to supply the vertical force for
bar deformation is frequently a hydraulic cylinder. The vertical
force is directly acting on the back up rolls.

Every FM stand has to achieve a particular proportion of
thickness reduction accurately. In order to have a more stable
rolling process, a specific strip tension between the slabs is
needed, which is supplied by devices called loopers. Tension
also contributes to thickness reduction. Therefore, thickness,
finishing temperature, and tension, among other variables,
should be controlled when the strip is being rolled within the
FM. However, the controllers set points are not straightfor-
wardly obtained since the incoming bar conditions, such as
temperature and resistance, may vary from bar to bar. Final
product specifications may also change. Therefore, the initial
set points for controllers have to be calculated and sent to
controllers before the incoming bar enters the FM; otherwise
head-end may not conform to the required specifications.

2.1 Initial Set-Points Calculations

The exit thickness at intermediate stands is calculated,
among other variables, from initial and final thicknesses.
Suppose a stand i has to attain an exit thickness hi for given
initial and final thicknesses. When a specific strip is being
rolled, the reaction force, called roll separation force, will
produce deformation of the stand housing since it is not
infinitely stiff, see Fig. 2. This will cause the gap between rolls
to widen. This deformation is called stretch. Therefore, the
reference of the cylinder position regulator should be set such
that the gap between rolls equals hi minus stretch. Thus, the
stretch has to be known to calculate the cylinder position
regulator set point before the bar enters the mill; otherwise, the
strip head-end may not fulfill quality specifications. Stretch
depends on the force required for bar thickness reduction; in
plant, an experimental stretch/force curve is periodically
obtained. Notwithstanding, since force measurements are
available only after the bar is in the FM, force has to be
predicted, which depends on bar resistance which, in turn,
depends on steel grade and bar temperature. Thus, the
calculation of the initial cylinder position regulator reference
requires that the incoming bar head-end entry temperature be
known beforehand.

On the other hand, in order to achieve the specified finishing
temperature at the bar head-end, since the mill cannot add heat,
a specific strip speed is required. Mill speed would depend on
the difference between the bar entry temperature and the
required finishing temperature. This involves a number of
calculations of heat loss and gain at each stand since
temperature is not measured at every stand for economic and
physical reasons. However, calculation of the initial reference
of the motor drivers requires as well the knowledge of the
incoming bar head-end entry temperature before the bar enters
the mill.

2.2 Problem and Proposed Solution

From the above discussion, it can be concluded that rolling
temperature at bar head-end, among other variables, have to
be known before the bar enters the FM to calculate both, the
initial hydraulic cylinder position (which determines thick-
ness) and the motor speed (used for controlling the finishing
temperature). Since conditions along the bar change, after the
bar has entered the mill, initial set points are adjusted by the
automatic gauge control and the finishing temperature control.
The more accurate the temperature predictions are the faster
the controllers converge; hence, temperature prediction
(among other variables) is of crucial importance for both,
the bar head-end and the bar main body to fulfill quality
requirements.

However, temperature measurement at FM entry is not
reliable because of oxide formation (Ref 1, 2) and recalescence
(Ref 3); consequently, it has to be estimated from RM exit
measurements which are more reliable. As can be seen in
Fig. 1, RM exit is equipped with a descaler device labeled with
letter D. In Fig. 1, the temperature measurement points are
labeled with the letter T; in this particular mill, the temperature
that is used for temperature estimation is the one measured after
the crop shear.

However, as mentioned above, measurement uncertainties,
variations in the process, and continuous product changes may
have detrimental effects on estimation, i.e., large estimation
error and therefore a faulty mill set-up, leading to a non-
conformational bar head-end (Ref 4). In order to overcome the
aforementioned problems, estimation systems based on AI
techniques such as ANNs and FL have been proposed.

This study is concerned with the bar head-end temperature
estimation at the SB entry by ANNs and neural Gray-Box
models, given its importance for both, bar head-end and bar
body to meet requirements.

3. Temperature Model Description

In this section, the physical model used currently in plant is
briefly described; the details are out of the scope of this study,
since the model is used here only as benchmark for comparison
purposes. The reader should consult Ref 3, 24 for a deeper
insight on temperature physical modeling. Figure 4 shows a
flow chart of the SB entry temperature estimation sequence.

As can be seen in Fig. 4, in practice, traveling time is also
calculated. Every 5 s, the bar is checked for arrival to SB entry
area, if bar has not arrived yet, the temperature calculation is
performed adding 5 s to traveling time; this will lead to a
maximum traveling time error of 5 s. It should also be pointed
out, that the PI calculation term is performed after the bar has
arrived, and real SB temperature and traveling time have been
measured. This is done in order for the PI term to compensate
only for model temperature prediction errors with no influence
of time miscalculations. It can also be noticed from Fig. 4 that
the PI term to compensate current bar prediction error is
calculated from the previous bar error.

Temperature modeling is performed by a one-dimensional
(1D) finite difference algorithm, and it is based on heat
conduction Fourier�s first law and heat loss of the surface by
radiation. The heat flow from and into one bar element is given
by (Ref 3):
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Qc ¼ ðT1 � T2Þ
KAdt
D

ðEq 1Þ

where A is the area of the heat conducting path, D is the dis-
tant between elements, K is the thermal conductivity, and
dt is the elapsed time.

Heat loss at the surface by radiation can be calculated as
(Ref 3):

Qr ¼ ðT4
s � T4

AÞrAedt ðEq 2Þ

where Ts is the surface temperature, TA is the ambient temper-
ature, r is the Stephen-Boltzmann coefficient, and e is the
emissivity. Heat loss at surface and the thermal conductivity
were experimentally tuned.

Heat loss through the oxide film is also considered,
assuming the oxide layer as having zero heat capacity. The
oxide heat loss is given by (Ref 24):

Qo ¼ ðTs � ToÞ
Ko

Do
ðEq 3Þ

where To is the oxide surface temperature, Ko is the oxide
thermal conductivity, and Do is the oxide layer thickness.

The model calculates the bar surface and center tempera-
tures at the SB entry from: (1) the surface temperature
measured at RM exit at the end of the last pass after the shear
(see Fig. 1), and (2) the traveling time from the RM exit (at the
shear) to the SB entry, see Fig. 4. In this study, only the surface
temperature at the bar head-end is to be estimated by the ANNs
and neural Gray-Box models.

3.1 Physical Model with Proportional + Integral Additive
Compensation

In general, mathematical models used to represent physical
processes are approximations due to simplifications and
neglecting of terms; leading to prediction errors. In some
applications, these errors may be sufficiently small; however, in
other cases, they have to be reduced. Such is the case of
physical modeling that is used to predict temperature at the SB
entry. In a number of HSM sites, the SB entry temperature
physical model prediction error is reduced with an additive
term calculated by a Proportional + Integral structure. The
model prediction error is calculated and then a compensation is
added to the next bar model temperature prediction, such
scheme is referred in this study as model + PI and it is shown

Fig. 4 Flowchart of SB entry temperature estimation process
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in Fig. 3. In Fig. 3, k denotes the current bar while k� 1
denotes the previous one; T̂SBk and �TSBk stand for current model
predicted and current measured SB entry temperatures, respec-
tively, ek is the current bar prediction error, and wk�1 is the PI
compensation calculated from previous bar error. Figure 4
depicts a flowchart showing the prediction sequence including
the PI compensation. As mentioned above, the PI compensation
term is calculated from previous bar estimation error.

Estimations of the ANNs and neural Gray-Box models
developed here are compared to those of the model + PI used
in plant.

4. Neural Networks Fundamentals

In this section, a brief description of ANNs� fundamentals is
presented; for a deeper insight, see Ref 25.

The particular ANN architecture used in this study is shown
in Fig. 5. This feedforward ANN has layers of neurons with m,
n, and r neurons in the input, hidden, and output layers,
respectively. The neurons in the input layer receive the user�s
inputs and pass this information to the neurons in the hidden
layer through arcs where certain weights modify the informa-
tion in transit. The hidden neurons apply a transforma-
tion—commonly a nonlinear one—to the received weighted
information and then pass the new data to the neurons in the
output layer through a different set of connecting arcs and their
respective weights. The neurons in the output layer transform
the data once again—usually in a linear fashion in this
point—and provide the predictions of the ANN.

The mathematical expression of the ANN shown in Fig. 5
is, then:

y ¼ f2ðvf1ðwtxþ bÞ þ cÞ ðEq 4Þ

where

f1ðaÞ ¼
1� e�a

1þ e�a
ðEq 5Þ

is called the activation function; f2ðaÞ ¼ a; x is an m9 1 vec-
tor with values of independent input variables as elements; wt

is a transposed matrix with dimensions n9m that keeps the
weights on the arcs joining the input neurons with the hidden
neurons; v is an r9 n matrix that holds the weights on the
arcs going from the hidden neurons to the output neurons;
vectors b and c of dimensions n9 1 and r9 1, respectively,
contain weights that act as biases; and y is an r9 1 vector
containing the values of the dependent output variables. It is
worth mentioning that there may be more than one hidden
layer, changing Eq 4 accordingly. In this study, only ANNs
with one or two hidden layers were used.

A critical decision called for when using ANNs is to
determine the number of hidden layers and neurons to provide
an adequate fit without sacrificing the ANN�s prediction
capabilities. Although many methods have been suggested for
this purpose, a common one involves trying different numbers
of hidden layers and neurons so as to find a compromise
between the network�s learning and generalization performance.

The ANN has to pass through a learning stage called
training. Therefore, in order for the ANN to be trained, input/
output real measured data from the process have to be
collected—the data set used for training is called ‘‘training

Fig. 5 Neural network architecture
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data set.’’ Every input/output record from the database is called
‘‘data pair.’’ During training, the network‘s weights are
optimized to minimize the prediction error measured typically
with the mean squared error (MSE) over the training data set.
The whole training data set is applied to the network a number
of times until MSE is satisfactory: each time is called ‘‘epoch.’’
Network�s weight optimization is performed by the so-called
‘‘backpropagation’’ algorithm, in which the error is propagated
backward from the output layer to the input one.

After training, the network�s generalization capabilities have
to be tested; then prediction has to be carried out over a
different data set called ‘‘validation data set,’’ however, from
the same statistical universe as the training data set. The
validation set is applied to the network only one epoch, usually
with the weight adjustment disabled. A common practice is to
randomly partition the database into two different sets one for
training and one for validation.

4.1 Gray-Box Models

Gray-Box systems are those that combine a physical model
with an AI system. The parallel Gray-Box is the most
commonly found in the literature; it consists of two systems
connected in parallel. In this study, the AI systems will be an
ANN connected in parallel with the model + PI as shown in
Fig. 6. As can be seen in Fig. 6, the ANN output is an additive
term; hence, the ANN�s prediction can be considered to be
compensating an additive estimation error of the model + PI.

5. Methodology

In this study, the SB entry temperature is estimated by
ANNs and neural-based Gray-Box models. The types of ANNs
and neural-based Gray-Box models developed and tested here
are feedforward ANNs with one or two hidden layers and 3, 5,
or 7 neurons per hidden layer. The intention was to design lean
ANNs to allow achieving faster convergence and short
computation time.

The method described in Section 4 to train and validate the
ANNs was used throughout this study. The ANNs were trained
and tested; choosing the one with the best PMs over the
validation data set. Performance evaluation of the developed
systems is carried out by five PMs applied on the estimation
error: the PMs are defined below.

The physical model used in plant predicts SB entry
temperature from surface temperature measured at the exit of
the RM, and the bar traveling time from the RM exit to the SB
entry. These factors have been proven to influence the SB entry
temperature prediction; hence, they were also chosen to be the
inputs to the ANNs and Gray-Box models used in this study

having the ANNs—two input neurons for x1 and x2 and
only one neuron in charge of presenting the prediction for
temperature (y).

As mentioned above, it can be seen in Fig. 4, that traveling
time is calculated, having an error of 5 s at the most.
Nevertheless, the measured traveling time is used to calculate
the additive PI term to compensate only for the model estimation
error. In this study, the measured traveling time will be used to
evaluate the model + PI and the neural systems developed here.
In this case, an estimation scheme as the one shown in the
flowchart of Fig. 7 is assumed. Figure 8 depicts a flowchart
showing the estimation scheme using a Gray-Box model.

One of the advantages of ANNs is that inputs can be
incorporated without significant changes on ANNs architecture;
also, a deep knowledge of the physical behavior of the process
is not required at all. Some ANNs and ANN-based Gray-Box
models were designed adding some extra inputs to test some
factors not included in the physical model but considered to be
important for the heat loss process. These factors are: steel
composition in percent weight of carbon (x3), manganese (x4),
silicon (x5) and copper (x6); RM previous pass screw position
(x7); RM previous pass force (x8), and elapsed time between
bars (x9). Figure 9 shows the prediction flowchart correspond-
ing to a Gray-Box model with additional factors.

Since in the Gray-Box model the ANN output is added to
the model + PI estimation (see Fig. 6 and 8), the ANNs were
designed to estimate the model + PI estimation error. Now the

Fig. 6 Parallel Neural-based Gray-Box scheme
Fig. 7 Flowchart of SB entry temperature estimation process using
measured traveling time
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ANN will have the same two inputs as the physical model (x1
and x2 as defined above) and one output, the ANN estimation of
the model + PI estimation error (z). Note that the output of the
Gray-Box model is still called y, while in Fig. 6, the
model + PI estimation is called T̂m: The model + PI estimation
error was calculated from the training data set. Their estimation
error vector was used to train the ANNs. Once the ANNs
systems were trained, the overall Gray-Box structures were
built and evaluated using the validation set. Gray-Box systems
to test the additional factors mentioned above were also
designed, with the additional factors (x3, x4, x5, x6, x7, x8, and
x9) being these inputs only for the ANN and not for the model
+ PI in Fig. 6; see also Fig. 9.

All ANNs were developed using the software MATLAB�.
The Levenberg-Marquardt algorithm is a variation of the
traditional backpropagation learning algorithm which provides
faster responses; for this reason, this algorithm was chosen in
this study for training the ANNs.

As mentioned, five PMs were applied over system prediction
errors with the validation set to evaluate the ANNs and Gray-
Box models developed here. The estimation error is given by:

e ¼ Te � Tm

where Te is the temperature estimated by the particular system
to be evaluated, and Tm is the measured temperature both at

SB entry area. The PMs are (1) mean error (ME):
�e ¼

P
i ei=N ; where N is the number of elements in the vali-

dation data set, and i = 1, 2, 3,…,N denotes the input/output
data pair number; (2) standard deviation (SD):

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðei � �eÞ2=N � 1
q

; (3) mean absolute error (MAE):

j�ej ¼
P

i jeij=N ; (4) root mean square error (RMSE):

ermse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i e
2
i =N

p
; and (5) the percentage of bars of the val-

idation data set with ei within ±C �C, where C is a tolerance
defined as follows.

A PM defining the percentage of bars within some
specifications (#5 PM) would be very illustrative; however,
in practice, there are no standard specification limits for entry
temperature estimation error. Then, a reasonable number for C
had to be chosen. According to one of the mill automation
system manufacturers given as a ‘‘thumb rule,’’ an estimation
error of 14 �C will propagate into the FM and will create a
10% error force which may cause a 50-70-lm thickness error
(Ref 2). Although this is only an empirical rule and no
scientific proof is given, the manufacturer experience should
not be neglected. It can be used as a reference number, and it
would be desirable to choose a number not much greater than
14�. On the other hand, with the tolerance for finishing
temperature control being ±20 �C, it is not preferable to
exceed 20 �C. Therefore, for evaluation purposes only, in this

Fig. 8 Flowchart of SB entry temperature estimation process with Gray-Box model
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study C will equal 20. Thus, defining #5 PM as the
percentage of bars with ei within ±20 �C, is abbreviated as
‘‘% Bars within ±20 �C.’’

When evaluating the systems, a ME closer to zero is pursued
while for SD, MAE, and RMSE, low values should be
expected. A large percentage of bars with an estimation error
within ±20 �C is desirable.

The study presented in Ref 23 is extended here by: (1) using
a larger data set; (2) evaluating performance with two more
indexes, i.e., RMSE and the percentage of bars within ±20 �C,
this making the evaluation more conclusive; (3) testing factors
other than those in the physical model; and (4) comparison
against the model compensated by the PI structure as used in
plant.

6. Results and Discussion

6.1 Experimental Data

The data used to carry out the experiments were collected
from the HSM 1 of TERNIUM-Hylsa on-line and real-time
basis; however, the system tests are run offline. Information of
748 bars of different degrees was collected, 60% of them was
used for training, while the remaining 40% was used for
validation. Figure 10 and 11 show dispersion diagrams of the

measured RM exit temperature and measured SB entry
temperature, respectively; Fig. 1 shows the temperature mea-
surement points. It should be noted that, as pointed out, SB
entry temperature measurement is not as reliable as that at the
RM exit—thus, in practice, model + PI compensation is
employed only after measurements have been checked and
spurious measurements have been eliminated. However, in

Fig. 9 Flowchart of SB entry temperature estimation process with Gray-Box model and additional factors

Fig. 10 Dispersion diagram of the RM exit measured temperature
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general, in a noisy environment, as in the case of a hot rolling
line, measurement errors may occur during data collection;
therefore, all collected data were also checked before the
systems were tested.

x1 and x2 ranges are [988-1124 �C] and [23-162 s],
respectively, while the output variable y has a range of [810-
1027 �C]. The input data were normalized between [�1 and 1]
according to Eq 5.

6.2 Result Analysis

The ANNs developed as described in Section 5 were ANNs
and ANN-based Gray-Box models with and without additional
inputs. They have been tested after training for SB entry
temperature estimation with the validation data set. As
mentioned above, performance was evaluated using five
different PMs applied on the estimation error. The model + PI
was also tested, and its performance was evaluated for
comparison purposes.

Table 1 shows the PMs of the best ANNs and Gray-Box
models developed here, both with and without additional
factors and that of the model + PI. The best results are
highlighted in bold characters.

It can be noticed from Table 1 that ANNs and Gray-Box
models PMs are very similar with Gray-Box models having
only a slightly better performance to show than ANN in terms

of ‘‘% Bars within ±20 �C’’ for the case when additional
entries were not included. All the ANN and Gray-Boxes
developed here have considerable better PMs than the
model + PI. Therefore, they can be considered to have better
prediction capabilities than the traditional system used in plant.
This may contribute in practice to lower the number of non-
conforming bars. This suggests that the neural systems are a
feasible option for SB entry temperature predictions; however,
in order to recommend their implementation in plant, some
more exhaustive tests with larger data set should be performed.

It can also be seen in Table 1 that the incorporation of the
additional factors brings ME much closer to zero than the
systems without the additional entries, showing the latter as
having larger skewness. Such additional factor produces an
improvement of about 10% in terms of ‘‘% Bars within
±20 �C.’’ Additional factors when incorporated to the ANNs
improves performance showing their influence on the heat loss
process, and the same deserves further study.

Figure 12 shows histograms of the model + PI, the ANN,
and the Gray-Box. Only those neural systems without addi-
tional entries are shown to allow a better comparison with the
model + PI. The results shown in Fig. 12 are consistent with
those shown in Table 1; both neural systems have a mean value
closer to zero and less dispersion than the model + PI, which
yields a higher ‘‘% Bars within ±20 �C.’’

Figure 13 and 14 show dispersion diagrams of the
model + PI and the Gray-Box-predicted SB entry temperatures
versus measured SB entry temperatures, respectively. The 45�
line indicates the ideal estimation. As can be observed in
Fig. 13 and 14, Gray-Box prediction shows the less dispersion
of both, this being consistent with results sown in Table 1 and
Fig. 12; however, it can also be noticed that the best predictions
are those at mid-temperatures; low- and high-temperature
predictions have to be improved.

These results are promising, on the one hand, because of the
advantage that the ANNs offer, i.e., less computing time
required than that in the model implemented by finite
difference. On the other hand, the Gray-Box model, which
still works along with the finite difference model, is also
improving prediction having the advantages of safer commis-
sioning stage and a physical interpretation model.

Fig. 11 Dispersion diagram of the SB entry measured temperature

Table 1 Performance indices for ANNs and Gray-Box
models

System SD ME MAE RMSE
% Bars

within ±20 �C

Without additional entries
Gray-Box 15.9224 7.0843 14.0802 17.4679 75
ANN 16.1084 �8.2047 14.6147 18.0537 73

With additional entries
Gray-Box 15.0723 �2.3862 11.8331 15.2352 82.9
ANN 14.8299 20.4108 12.7222 16.0394 82

Model + PI 20.6479 �18.9096 23.3486 27.973 47.8
Fig. 12 Histogram of the estimation error of the model + PI,
ANNs, and Gray-Box

Journal of Materials Engineering and Performance Volume 20(7) October 2011—1137



7. Conclusions

In this article, one and two hidden layer ANNs and neural-
based Gray-Boxes with 3, 5, or 7 neurons per layer were
designed and applied for SB entry temperature estimation.
Systems with some additional factors than those considered in
the traditional physical modeling were also designed. The
experiments were carried out using real information from plant.
All neural systems developed here showed considerably better
performance, and therefore better prediction capabilities, than
the model + PI, with improvement ranging from 47 to 87% in
bars with errors within 20 �C in some cases. However, Gray-
Box schemes had slightly better performance than ANNs for
the conditions tested here. The additional factors were also
proven to have some influence on the heat loss process since
they improved temperature prediction by about 10%. These
results are promising, since by improving temperature predic-
tion, the systems developed here may contribute to process
throughput; however, in order for these systems to be
recommended for implementation more exhaustive tests are
required. Future research should include further study on the

influence of the additional factors and comparison with fuzzy-
based systems (Ref 26).
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